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I. Introduetlon.

Decision trees are often used to model algorithms for combinatorial and
geometrical problems. While motivation for these models rests primarily on their
generality and conceptual simplicity, they also have the benefit of offering at
present the most promising prospect for proving worst case lower bounds in many
problems.

For linear decision trees several powerful techniques are known for bounding
the tree height from below, e.g. Reingold [9), Dobkin [31, Dobkin and Lipton
[4J[51, Yao [13), and Yao and Rivest 1151.

Much less is known for general algebraic decision trees. Beyond the naie in-
formation bound, Rabin's theorem (Rabin [81) and the convex hull problem (Yao
[141) are apparently the only known results.

The purpose of this article is to provide a general method for establishing
lower bounds for the worst case performance or algorithms prescribed by arbitrary
algebraic decision trees. Technically this work extends the results of Dobkin and
Lipton [4)[5], but the tools put to work here provide non-trivial bounds for a large
class of previously untouchable problems.

Before giving the detailed computational model it seems worthwhile to men-
tion informally a concrete application.

Theorem 1. Any algebraic decision tree of bounded order which solves the h-
dimensional knapsack problem must have height at least 11(nl).

This result extends the knapsack bounds under the linear decision tree model
due to Dobkin and Lipton [4) and the fl(n log n) result of Dobkin [31.

The method used here rests critically on a result from real algebraic geometry
due to Milnor [71. Since the machinery used by Milnor may not be familiar to
workers in complexity, we have tried to give an expository of the basic facts
necessary for making this work self-contained. The bounds discussed here should
prove useful in many related problems.

In the next section we rigorously specify the computational model and outline
the lower bound method. The third section exposits Milnor's inequality and gives a
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heuristic argument which tries to pinpoint the necessity for the more sophisticated
tools.

The fourth section is devoted to applications and in particula to the proof
of the result on the knapsack problem (Theorem 1) which was mentioned above.

The final section mentions some open problems and suggest a line of attack
which if sufficiently developed might add significantly to the power of the present
method.
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2. Computational Model the General Method.

Let W C R" be any set. A (d-th order) decision tree T for testing if
Z E W is a ternary tree with each internal node containing a test of the form
P(Z1,Z2... , z) : 0, where p is a polynomial of degree at most d. Each leaf of T
contains 'yes' or a 'no' answer. For an input 1, the procedure starts at the root
and traverses down the tree. At each internal node a branching is made according
to the polynomial test at that node and when a leaf is reached the answer to the
question 'is I E W* must be given correctly.

Now let CI(W) be the minimum height hT for any d-th order decision tree
T (for the set W). Our key objective will be to obtain lower bounds on Ct(w),
and the bound given here will depend heavily on the topology of W.

By #W we denote the number of (disjoint) connected components of W. Also
for any polynomial p(z1,z2,...,z.) we set Sp = I p(l) 76 0), and for any
integers n, m > 0 we put 6(m, n) = max( #Sp I p is a polynomial of n real
variables and of degree at most m).

The following elementary result provides the skeleton of our method. (To
put flesh on the bones will require the bounds on P obtained in the next section.)

Theorem 2. Let W C V be an open set, and let T be a d-th order algebraic
decision tree for deciding if I E W. If W is the disjoint union of N open sets,
then the height hr satisfies the inequality

2 hp(hTdn)> N.

Proof. For each leaf I of T let V be the set of inputs N E R" leading to I
and let It be the set of constraints resulting from the tests. Let L be the set of
leaves I such that Ii consists only of strict inequalities and such that the answer
stored at I is *yes'. One should note that each V is an open set and V C W.

We now write W = U'- W where each W is a connected open set and
the Wi are disjoint, and write Ve = (2: pt,(f) < 0, pie < 0,...,pt,(N) < 0)
where each pl, is a polynomial of degree not greater than d and where a <
hr. As a consequence of this representation, Ve _ { I qe(f) V& 0 - D

4
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where qg(2) - 11 p4 () is a polynomial of degree at most hrd. Moreover, each
connected component of V, is contained in at most one component of D. Hence,
V1 has at most P(hrd, n) connected components V1, VC.

Since each leaf of T is correctly labeled, each Vj has to be completely
contained in some W,. Since the number of* such V14 is at most A(hrd, n) and
there are only ILI values of I which lead to *yes" the number of components N
of W is bounded by ILIP(hrd, n). Since 2 T > ILI the theorem follows. U

i
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3. Counting Connected Components.

To use Theorem 2 one needs bounds on P(m, n) and this is apparently no
easy matter. Fortunately, there is a bound due to Milnor [7] which is sufficient
for some applications:

_(m, n) (m + 2)(m + )- (3.1)

The proof of Milnor's inequality rests on the several substantial results from Morse
theory and algebraic topology, but it is nevertheless possible to give a heurtistic
indication of an analogous result.

The only preliminary needed for the argument is Bezout's Theorem which
says that any system of n algebraic equations in n variable with degree d has
either infinitely many (complex) solutions or at most d'. For a classical approach
to the proof of Bezout's Theorem one can consult Enriques [61, or, for the case
n = 2, there is a nice proof in Seidenberg 110).

To use Bezout's Theorem we suppose that p is a real polynomial in n variables

with degree m, and we note that R can be chosen so that A = {p> 0) f(q22

R2 - X I z > 0} has as many bounded connected components as (p > 0) has
connected components (bounded or unbounded). Since each bounded connected
component of A must contain a local maximum of pq, the number of bounded
components of A is majorized by the number of zeros of the system Vpq = 0.
By Bezout, this number is either infinite, or else bounded by (m + 1)".

This finite bound is for our purposes almost as sharp as Milnor's bound. The
real work comes in providing a rigorous perturbation argument which rules out the
case when Bezout gives only the trivial infinite bound. That is precisely the case
which causes all the trouble and presents this section from being self contained.

We should further remark that a recent exposition of R. Bott [2] provides an
intuitive introduction to Milnor 17], where inequality (3.1) is given as Theorem 3.
As it happens, the problem of determining P(m, n) is actually very deep and it is
intimately connected with Hilbert's 16-th Problem, see Arnold [1).
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4. Applications.

We now use Theorem 2 to derive lower bounds. Clearly, the function 2sp(zd, n)

is an increasing function of z. Let a(d, n, N) be the minimum z satisfying

2 8(zd, n) > N. Theorem 2 immediately yields the following formal bounds:
Any general upper bounds on P can be used to derive lower bounds on a and

hence Cd. In particular, Milnor's bound (3.1) gives the following result.

Theorem 3. For any real c,

Cd(W) 1inc logN, N -(NV - 1))

when N= #W.

Corollary. If #W = (3(n(1+5)n) for some fixed 6 > 0, then

C, (W) = 11(og( # W)).

Proof. Let z = Cd(W). Then 2zp(zd, n) > N. Hence by (3.1)

2z(zd + )n > N.

Either 21 > N' or (zd+ )n > N 1 -', proving the theorem. *

The corollary follows by writing #W = nn(l+o(%)) and setting c -- n-

in the theorem.
Thus, Theorem 3 gives a lower bound nonlinear in n when #W grows at least

as fast as n(1+6),,. This is also necessary since the theorem only gives a lower
bound O(n) when #W = O(nn).

In the first example given below, #W f 2" thus we have a good lower
bound. The other two examples have #W < n' and Theorem 3 does not give
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nonlinear bounds. However, Theorem 2 (or, (4.1)) is still true for these later
examples, and a better determination in the future may result in an improved
bound.

Example 1. The Knapsack Problem. Given real numbers Z1, Z2,. . ., z., decide if
there exists some subset S C {1, 2,..., n} such that Eis = 1.

In this case, W= {(z 1 , z 2 ,..., z) Z I Is(Zis Z' - 1) 30 }. It was shown
in Dobkin's and Lipton (1978) #W > 21. Thus, C4(W) = 0(n2) for any fixed
d. This generalizes the result of Dobkin and Lipton where they showed CI(W) =

0(n2).

Example 2. Element Distinctness. Given Zz,. .. , z. E R, is there a pair i, 3"
with i 34 j and zi = zj? In this case,

W = ((ZIZ 2 .. )I (zi -Z) /- 0.) C

It is easily shown that #W = n! since each region {(zI,z 2 ,...,z.) I z 0 (1) <
ZO(2) < ... zo(,) ) is a maximal connected component of W for each permutation

o. One therefore has CI(W) _! a(d, n, n!).

Example 3. Extreme Points. Given n points on the plane does the convex hull
formed by them possess n vertices?

Here W cannot be expressed by an easy algebraic relation but it is still
possible to show #W > (n - 1)!. Obviously, W is an open set in (R2)1. For
any configuration (ZI,z,2 ... ,z} in W C (R2 )1, we have a cyclical ordering a
of the points { z I I _< i < n} which is given uniquely by taking the points in
cyclical order. Clearly, any of the (n - 1)! cyclical permutations can arise in this
way so all that remains is to show that if a -/ a' then the configurations which
give rise to these permutations are in disjoint components of W.

For each configuration in W we consider the (n) element array A given
by A(zzjzt) where A is the signed area of the triangle formed by the 3-set
{ZizjzA.} C (z,,z 2,. . .,zn). If the configuration corresponding to a is con-
tinuously deformed in any way to the configuration for a' then A. is transformed
continuously into A.,. Since o and o' differ there is some triple (jzjzA} for
which A(zizjzk) has differing signs in A. and A.,. By the intermediate value

8



theorem there is therefore some time during the continuous deformation when

A(zizjzht) = 0. This says that zi, zj, zk are then co-linear and at that point

there are at most n - I extreme points in the configuration. This proves that

any passage from o to a' must go out of W, so a and e' correspond to different

components.

The main consequence of the preceding bound is that

c (W) 2! a(d, 2n, (n - 1)!)

and it was originally hoped that this would be sufficient to prove a conjecture of

Yao [ 14] that any algebraic decision tree of order d for the extreme point problem

must have height fl(nlogn). The Milnor bound in this case is not sufficiently

sharp to obtain the desired bound. We indicate in the next section a bound which

would be sufficient.

While these last two examples are disappointing in that they do not give the

conjectured non-linear lower-bounds, one should note that since only a yes-no

answer is required there is a logical necessity of only 2 terminal leaves. So, the

information theoretic bound in these two cases gives only the absurd bound log2 2.

9
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5. Open Problems and Directions.

Surely the most interesting and important problems pivot about finding
sharper bounds on P(m, n). It is conceivable that /P(m, n) = 20(m+ " ) which
could imply by Theorem 2 that CAW) = fl((og 2 N -i m)). This bound would

yield a 0(n log n) lower bound in Examples 2 and 3 for fixed d.
In fact, a somewhat weaker result will suffice for this purpose. Let P(d, in', n)

be the maximum of #Sp for any p of the form i p(zI, Z2,... zn), with each

pi of degree not greater than d. Clearly P(d, m ', n) :5/J(dm', n). The result one
really needs in Examples 2 and 3 is /3(d, rn, n) = 20(dr'+n). Can one prove
better bounds on fi(d, m', n) than on /P(m, n)? Here we note that it is not hard
to see that

m', (5.1)
j=O

since #(I, m', n) just equals the number of regions of Rn which can be partitioned
by m ' hyperplanes. (This is proved in Steiner (1826) (111 which is in the first
volumn of Crelle's J. Reine Ang. Math. and which is better remembered for
containing five fundamental papers of N. H. Abel. For modern treatment of (5.1)
see Wetzel 112] and the refrences given there.)

A more modest approach to the problems suggested by Examples 2 and 3
rest on obtaining bounds for any small values of d > 2. It is known (Yao 114])
that C2 (W) = f0(n log n) in Example 3, but there are no other known non-linear
lower bounds even in the case d - 3.

10
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